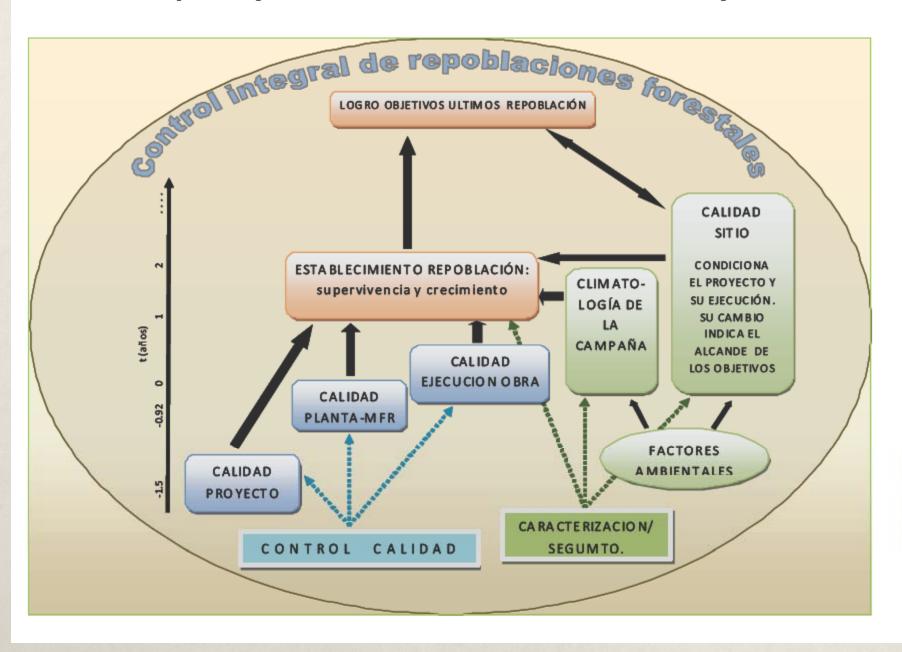
EL MATERIAL VEGETAL EN LOS PROYECTOS DE RESTAURACIÓN DE HÁBITATS NATURALES

LA CALIDAD MORFO-FISIOLÓGICA DE LAS PLANTAS

Prof Dr **Antonio del Campo** Re-ForeST Universitat Politècnica de València ancamga@upv.es


VALENCIA, 13 NOVIEMBRE 2014

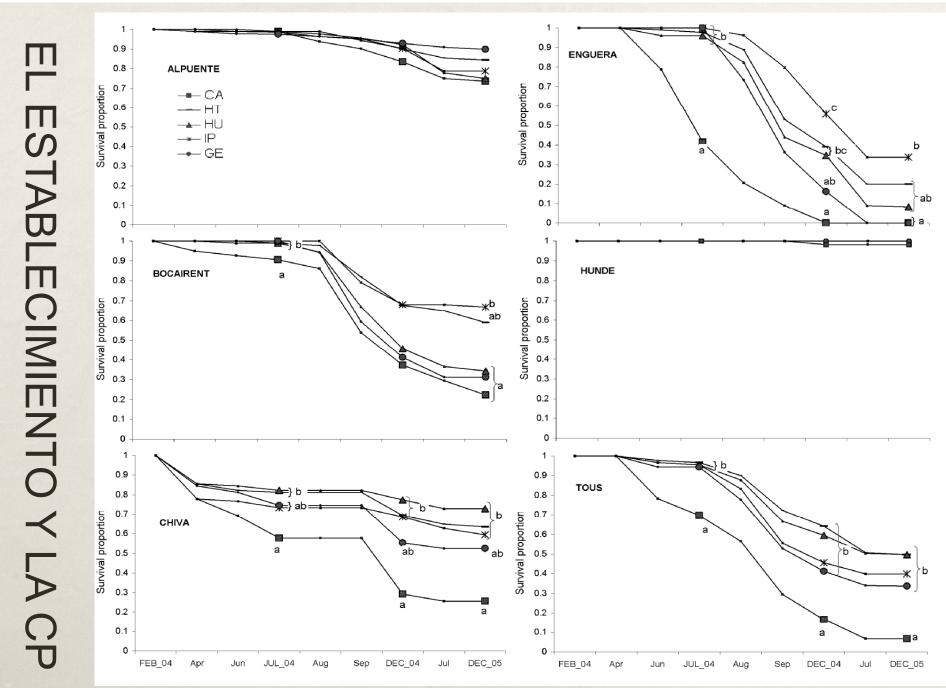
CONTENIDOS


- * Introducción:
 - * Encuadre de la importancia de la CP en el contexto global de la repoblación
 - * ¿Por qué es importante la CP?: Proporción de los resultados de establecimeinto debidos a CP
- * Calidad de planta como adecuación al uso
- * Definición de CP
- * La calidad de planta y el vivero
- * La Calidad Cabal
- * La Calidad Comercial

Factores que explican el establecimiento de una repoblación

INTRODUCCIÓN

- * ¿Por qué es importante la CP?
 - * Influye en la respuesta en plantación
 - * Condiciones adversas: influencia importante de la CP


* ¿Por qué es importante la CP?

* Importantes variaciones en el stock disponible en viveros

INTRODUCCIÓN

- ① Planta de calidad es <u>aquella</u> que satisface los niveles previamente establecidos para supervivencia y crecimiento en un sitio particular de plantación (estación)
 - ★ Si la planta falla en la consecución de estos estándares → preciso replantar con nuevas plantas → compromiso en t y \$
- ② Calidad de planta: Mide aspectos relacionados con su genética, morfología, fisiología y bilogía.
 - Definición más precisa CP: Conjunto de características genéticas, morfológicas, fisiológicas y biológicas que estén cuantitativamente relacionadas con una respuesta satisfactoria en campo (VIGOR)
- ③ Estos aspectos varían con el uso que se vaya a dar a la planta y las necesidades del usuario → es preciso establecer dicho contexto:

Figura 2. Resultados de supervivencia de cinco lotes de pino carrasco de distinta calidad durante los dos años posteriores a plantación en seis localizaciones de Valencia (del Campo *et al.*, 2007b).

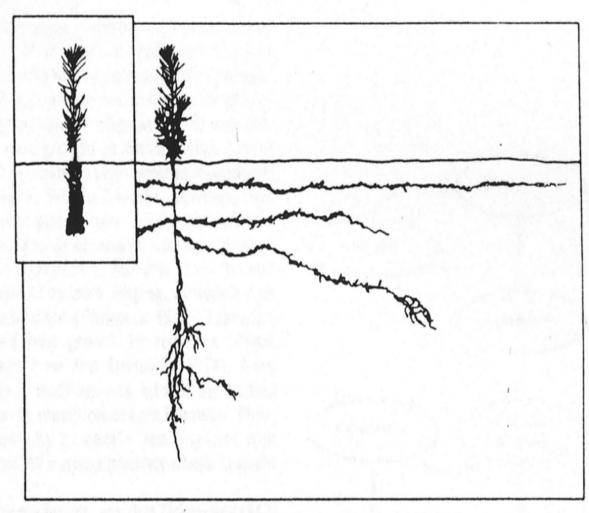


Fig. 1. Distribution of the roots of a naturally established seedling and a newly planted tree (inset). Root growth by tree seedling in the boreal zone can average around 1 cm/day during the growing season (Burdett et al. 1984), which means that a 1- or 2-year-naturally established seedling with a shoot 10-20 cm in height is likely to have a root system between 1 and 2 m in diameter. The illust tion thus tends to underemphasize the difference in root spread between a newly planted seedling and a naturally established seedle of similar biomass.

EL ESTABLECIMIENTO Y LA CP

- * Las relaciones hídricas de la planta
- * La nutrición nitrogenada de las plantas
- * Asimilación y transformación del C por las plantas durante el establecimiento

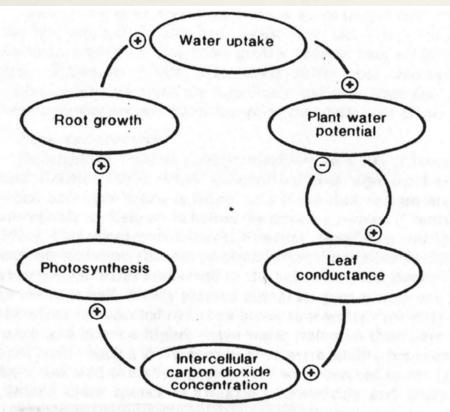
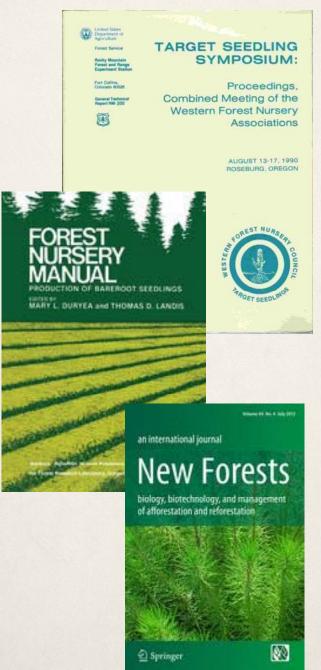


Fig. 3. The feedback relationship between root growth and photosynthesis in newly planted trees. +, enhancement effects; -, negative effects.


CP: DEFINICIÓN y CARACTERIZACION

- * CP: adecuación al uso, es decir, NO ES un conjunto de atributos prefijados que definen el producto,
 - * sino que es un concepto variable con el uso y el usuario
- * En spp mediterráneas, el contexto de uso limitaciones que impone el clima mediterráneo:
 - * Aridez, irregularidad de P, termicidad y degradación extremas características de los lugares de establecimiento.

- ★ Calidad planta → intenso campo de trabajo investigadores y forestales
- * En las últimas tres décadas cuando se han producido los mayores avances,
 - * Tanto en la *mejora* de las técnicas de *cultivo*,
 - Como en el desarrollo de tests y atributos para medirla
 - Definición de planta objetivo o estándares de calidad
- * Hoy día:
 - * Conjunto de características morfológicas y fisiológicas que estén cuantitativamente relacionadas con una respuesta satisfactoria en campo

CALIDAD CABAL Y COMERCIAL

* Calidad CABAL

- * Relacionada con el contexto de uso y usuario de la planta.
- * Pueden no estar definidos algunos de estos criterios y la planta ser aceptable para repoblación. Se distinguen:
 - * Calidad genética
 - * Control de atributos materiales y de respuesta (criterios cuantitativos)
 - * Calidad biológica (micorrizas y enfermedades)

* Calidad COMERCIAL

- * Relacionado con la presencia de defectos o daños por mal manejo o cultivo (criterios cualitativos).
- * Estos defectos excluyen definitivamente a las plantas y, aunque pueden ser subjetivos, deben ser siempre considerados, independientemente del destino o uso que se vaya a hacer de la planta.

EL CULTIVO EN VIVERO Y LA CP

EL CULTIVO EN VIVERO Y LA CP



EL CULTIVO EN VIVERO Y LA CP

- ★ Lograr una CP concreta (atributos q optimizan adecuación al uso)
 →
 - * Conocer y controlar el régimen de cultivo del lote de planta para ajustar la CP
 - * Cada vivero combinación única de factores de cultivo
 - ★ → manejar el cultivo:
 - Material forestal reproducción
 - Calendario de cultivo
 - Condiciones ambientales
 - Contenedores
 - > Sustratos
 - > Riego
 - > Fertilización
 - Control plagas/ enfermedades

Morfología y Fisiología

EL CULTIVO EN VIVERO Y LA CP: cómo se hace la planta??

CALIDAD CABAL: DEFINICIÓN y CARACTERIZACION

- ★ CP → definirse sobre unas características básicas q variarán cualitativa y/o cuantitativamente en función de este uso
- * Ritchie (1984):
 - Materiales, características morfológicas o fisiológicas directamente medibles
 - * Respuesta (comportamiento) respuesta de la planta al ser sometida a unas condiciones de ensayo particulares.

CP: LA MORFOLOGÍA

- Atributos materiales morfológicos pueden ser muchos
 - * Los más apropiados para medir calidad
 - * Muy correlacionados,
 - * Elegir los que den > información y sean fáciles de medir
- Considerable importancia x su facilidad de medición
 - Ługar prioritario en muchos estudios, controles y normativas de CP
 - * A veces se anteponen a los fisiológicos.
 - Arriesgado pues no bastan por sí solos para conocer la CP

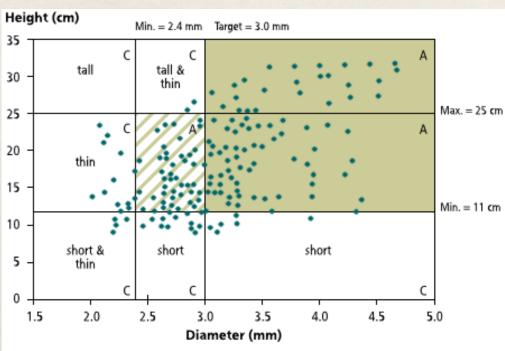
CP: LA MORFOLOGÍA

Variables medidas en el control de calidad de planta (clasificación de Ritchie, 1984)

	iles medidas en el control de calidad de pla JTOS MATERIALES	Unids.	Abreviac.	N	Material/Método
	tos morfológicos	Omao.	7 IDI CVIGO.		material/meteue
	Altura Diámetro al cuello de la raíz	cm mm	H DCR	200 200	Regla graduada (0,1 cm) Calibre digital (0,01 mm)
Parámetros	Pesos secos Foliar Aéreo Radical Total	g	PSF PSA PSR PST	25	Estufa a 65°C; Balanza Mettler Toledo 0,001 g
	Número de ramas laterales Número de yemas laterales	n° n°	N°Ramas N°Yemas	25 25	Conteo directo
	Area foliar % Area foliar clorótica o necrótica	Cm ² cm ²	AFoliar %AF-Clorótica	7 7	Análisis imágenes (Win-Rhizo®)
	Morfología radical: Longitud total del sistema radical Área superficial total Volumen total Diámetro medio de la raíz Número de puntas Número de bifurcaciones Número de cruces Fibrosidad: % L.T. ≤ 1 mm de diám. Longitud total del raíces blancas Diámetro medio raíces blancas Número de puntas blancas	cm cm² cm³ mm n° n° o o o cm mm	Long.T Supf.T Vol.T. Diam.Med. N° Puntas N° Bifc N°Crces %L≤1mm Long. Raíz Nva. D.M. Raíz Nva. N°Puntas Nva.	7 7 7 7 7 7 7 7 7	Análisis imágenes (Win-Rhizo [©])
Índices	Esbeltez (H/DCR) Cociente parte aérea–parte radical Índice calidad DICKSON	cm/mm g g ⁻¹	H/DCR PA/PR QID	200 25 25	Thompson (1985)
'n	Cociente longitud total de raíz / nº de puntas	adim	LgRz/n°Pt	7	Análisis imágenes (Win-Rhizo®)

CP: LA MORFOLOGÍA Y EL VIVERO

- ★ Morfología → respuesta fisiológica a las condiciones y prácticas del vivero
 - * Fecha de siembra, morfología general
 - * **Envase**: tamaño planta, sistema radical, densidad de cultivo,
 - ★ Al ↑ la densidad, ↓ diámetro y PS y ↑ altura
 - * Fertilización,
 - * Riego
 - ★ Exceso → ↓ aireación sustrato, → reduce el desarrollo morfológico
 - ★ Estrés moderado, → ↑ diámetro y ↓ altura
 - * Podas aéreas
 - * Práctica común en algunas spp: PS, H/D y PA/PR,


CP: Morfología en spp mediterráneas

- ★ Altura y el diámetro, → regulados RD 1356/1998 para las principales especies forestales.
- * Sobre estos rangos, se han propuesto modificaciones.

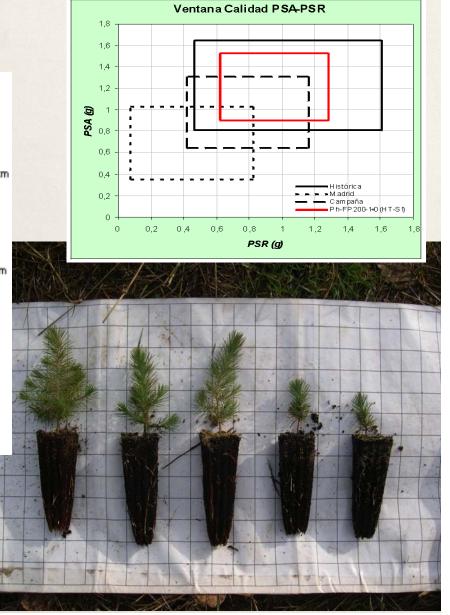

	EDAD	ALTURA	DIAMETRO	ESBELTEZ	
	(nº savias)	(cm)	(mm)	(cm mm-1)	(g g-1)
CONIFERAS					
Pinus halepensis	1	15 - 30 (10 - 25)	3 - 4 (>2)	5-7	1,5 - 2,0
Pinus pinea	1	20-30 (10 - 30)	3,5-4,5 (>3)	5-7	2,0-2,5
Pinus canariensis	1	15 - 30 (10 - 25)	(>2)		
Pinus pinaster	1	(10 - 30)	(>2)		
Abies pinsapo	2-3	8 - 9	3-5 (>3,5)	2 - 3	0,6-0,7
ÁRBOLES Y ARBUSTOS P	LANIFO	LIOS Y MATOR	RALES		
Quercus ilex	1	20 - 30 (8 - 30)	4-5 (>2)	4-7	0,6-1
Ceratonia siliqua	1-2	6 - 10	2-3	2-3	1-2
Olea europaea var. sylvestris	1	30 - 50	4-5	7-12	2-4
Quercus coccifera	1	>20	>4	4-5	0,5 - 0,9
Pistacia lentiscus	1	15 - 30	3-5	4-7	0.9 - 2
Lavandula stoechas	1-2	25 - 50	2-4	7-15	0.9 - 2

Tabla 2. Valores de morfología en distintas especies según el RD 1356/1998 (BOE 153, 27 de junio de 1998) para las principales especies forestales (entre paréntesis) y propuestas de modificación (valor o rango a la izada.) según Navarro *el al.*, (2006).

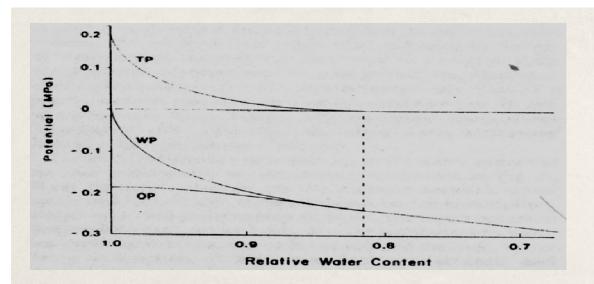
CP: Morfología en spp mediterráneas

Those seedlings in a quadrant marked with a "C" are classed as cull seedlings. Those in a shaded quadrant marked with an "A" are accepted as crop seedlings

CP: FISIOLOGÍA

- * Wakey (1948):
 - * atributos morfológicos no predicen respuesta y que las plantas con una condición fisiológica superior sobreviven y crecen +
- * Informan mejor sobre el *vigor actual* de la planta.
 - La respuesta post-transplante es fruto del estado fisiológico y su interacción con los factores ambientales
- * Sin embargo,
 - * Complejidad de su medición,
 - * Interpretación,
 - * Elevado coste,
 - * Inestabilidad de las propiedades fisiológicas,
- ★ → ello llevó a proponer, prácticas de vivero favorables para un adecuado estado fisiológico de la planta

CP: FISIOLOGÍA


- * Los elementos principales de la fisiología en el establecimiento:
 - * El estado hídrico
 - * La nutrición mineral
 - * Las reservas de carbohidratos
 - * La resistencia a heladas

Atributos fisiológicos				
Estado hídrico: Potencial hídrico de base	-MPa	PH	5	Cámara de Scholander
Estado nutritivo en hoja				Determinación en Laboratorio Agroalimentario
Concentración foliar N, P, K, Ca, Mg, Na	%	N, P,	25(1)	
Concentración foliar Fe, Cu, Zn, Mn, B	ppm	Fe, Cu,	25(1)	
Carbohidratos no estructurales de la parte aérea o radical				Determinación en Laboratorio Agroalimentario
Concentración PA ó PR de Almidón	%	Alm-P(A/R)	25(1)	
Concentración PA ó PR de azúcares	%	Aucz-P(A/R)	25(1)	

CP: Fisiología (Estado Hídrico)

- * <u>El estado hídrico</u>: concepto amplio que refleja la interacción entre la demanda atmosférica y la capacidad de la planta para satisfacerla
 - * → se mide x técnica de la cámara de presión (obteniendo curvas P-V)
 - * Los parámetros obtenidos permiten comprender mejor los mecanismos de ajuste osmótico y elasticidad paredes celulares, relacionados con la resistencia al estrés.

CP: Fisiología (Estado Hídrico)

- * A partir de estas curvas se estiman los siguientes parámetros
 - * Déficit de saturación hídrico en el punto de pérdida de turgencia (DSHPT, %). Es el DSH donde el potencial hídrico $\Psi = \Psi \pi (\Psi t = 0)$.
 - * Potencial osmótico en el punto de pérdida de turgencia ($\Psi\pi$ PT, MPa): (punto donde el potencial de turgencia se hace cero y $\Psi = \Psi\pi$).
 - * Potencial osmótico en saturación ($\Psi\pi0$, MPa): correspondiente al 0% de DHS (x=0).
 - * **Módulo de elasticidad de las paredes celulares** (*Emx*, MPa): cambio en la presión de turgencia debido a una variación del contenido de agua del simplasto.

CP: Fisiología (Nutrición)

- * La nutrición, suma importancia en producción de CP
 - ★ Afecta al crecimiento (→ morfología),
 - * A la resistencia al estrés y enfermedades,
 - * Todos los procesos fisiológicos gobernados por este factor
- * En vivero →
 - * la formulación del *fertilizante*, tasa de liberación, momento de aplicación
 - Otros factores ambientales relacionados con la absorción radical, el crecimiento, o la disponibilidad de elementos en la solución
 - * > intervienen en el estado nutritivo final de la planta

CP: Fisiología (Nutrición)

- ★ Cada especie →
 tiene unos
 requerimientos
 particulares de
 nutrientes.
- * Los generales:

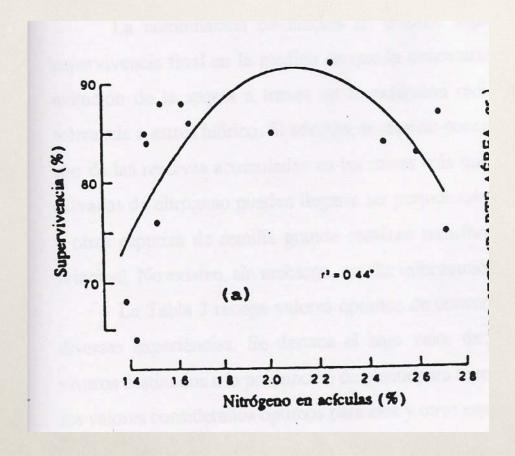
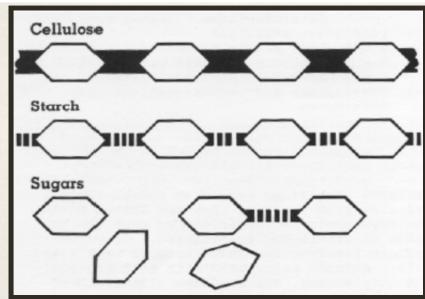

Nutriente mineral	Unidades	Raíz desnuda(1)	Contenedor(2)
N	% (Peso Seco)	1.20 a 2.00	1.30 a 3.50
P	% (Peso Seco)	0.10 a 0.20	0.20 a 0.60
K	% (Peso Seco)	0.30 a 0.80	0.70 a 2.50
Ca	% (Peso Seco)	0.20 a 0.50	0.30 a 1.00
Mg	% (Peso Seco)	0.10 a 0.15	0.10 a 0.30
S	% (Peso Seco)	0.10 a 0.20	lenuro de la gis
Micronutrientes:	en e delido	la Civilland des	eratus projes
Fe	ppm	50 a 100	60 a 200
Mn	ppm	100 a 5000	100 a 250
Zn	ppm	10 a 125	30 a 150
Cu	ppm	4 a 12	4 a 20
Мо	ppm	0.05 a 0.25	0.25 a 5.00
В	ppm	10 a 100	20 a 100
Cl	ppm	10 a 3000	andlin (1989)

Tabla 4.- Concentraciones de nutrientes minerales en plantas tipo de coníferas de vivero.


(1) Youngberg (1984²³); (2) W.R. Grace S.A.

CP: Fisiología (Nutrición)

* Ej. de la influencia del estado nutricional sobre el establecimiento (N)

CP: Fisiología (clorofila y CHNE)

- * La concentración de clorofila en hoja
 - * Se puede usar para predecir el estado nutricional
 - * Correlacionada con N y otros nutrientes (Fe, Mg)
 - * Para medir vigor de la planta
 - * La variación de la fluorescencia de la clorofila
- Contenido o concentración en carbohidratos no estructurales,
 - Almacén principal de energía de la planta,
 - ★ Si la fotosíntesis se reduce → el vegetal depende necesariamente de ellos
 - * Entre ellos: almidón, la glucosa y la sacarosa

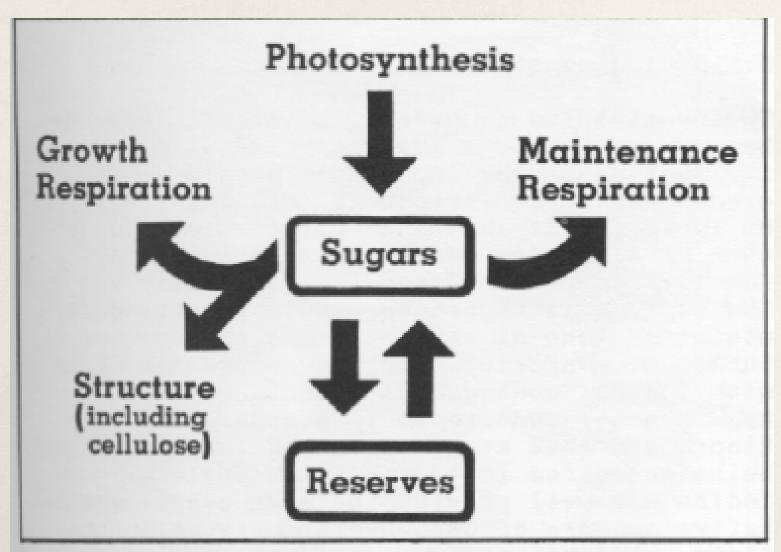


FIGURE 2. RELATIONSHIP BETWEEN THE VARIOUS
TYPES OF CARBOHYDRATES AND THE
PROCESSES OF GROWTH AND MAINTENANCE RESPIRATION.

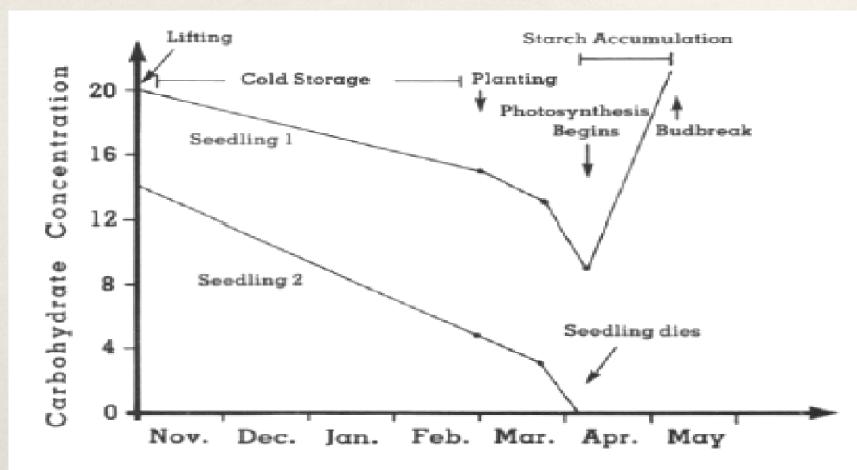
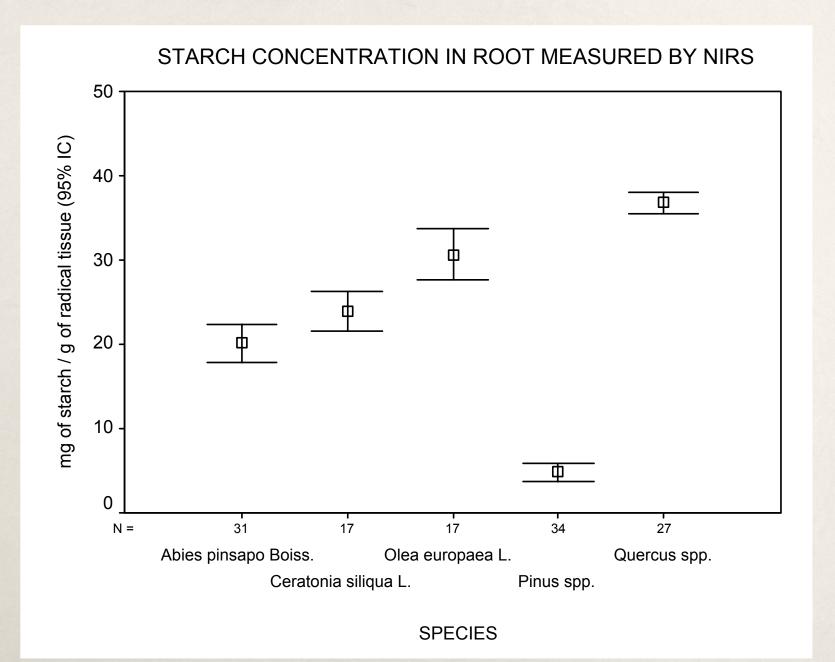



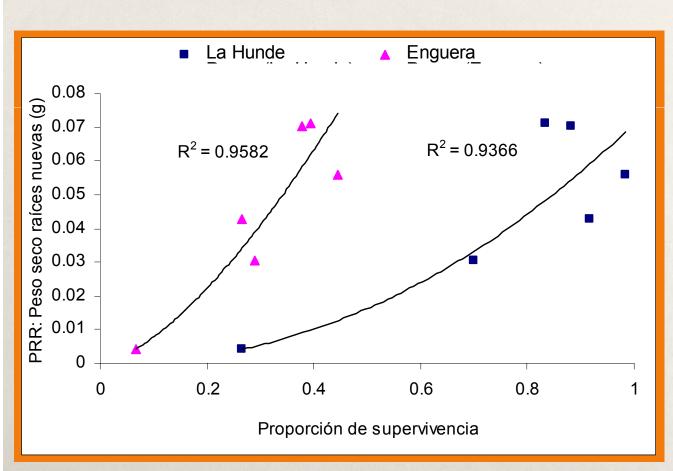
FIGURE 8. HYPOTHETICAL STARCH AND SUGAR
PATTERNS OF TWO SEEDLINGS DURING
THE LIFTING, STORAGE, AND PLANTING
CYCLE. ONE SEEDLING (TOP) SURVIVES: THE OTHER (BOTTOM), WITH
INADEQUATE CARBOHYDRATE RESERVES,
DOES NOT.

CP: Fisiología (CHNE)

- * En vivero, las prácticas culturales que los favorecen son las que ralentizan el crecimiento y estimulan la fotosíntesis:
 - * Espaciamiento,
 - * Inducción de estrés hídrico moderado,
 - * Temperatura de cultivo,
 - * Fertilización equilibrada, etc.
- * Se trata de un atributo con < atención q otros, debido
 - * Tipos de analíticas (variadas y complicadas),
 - * Precio elevado y unos pocos laboratorios especializados,
 - Pierden importancia cuando el desarrollo radical depende de la fotosíntesis del momento

CP: Atributos de respuesta (PRR)

- * Se basan en la asunción de que la respuesta de la planta a unas determinadas condiciones, estará relacionada con su respuesta en campo.
 - * Combinan morfológicos y fisiológicos.
- * Potencial de regeneración radical (PRR, i.: RGP) es el atributo más utilizado y generalizado
 - Se trata de una medida de la capacidad de una planta para producir nuevas raíces cuando crece en unas condiciones ambientales ideales



CP: Atributos de respuesta (PRR)

- Condiciones en que se realiza
 - ta, fotoperiodo, duración,...
- Procedimiento de cuantificación raíces
 - medición directa, peso, empleo de índices, etc.
- → problema de interpretación
- Las características de la sp en cuestión juegan un papel importante en la expresión del PRR:
 - durmancia
 - estado de reservas alimenticias

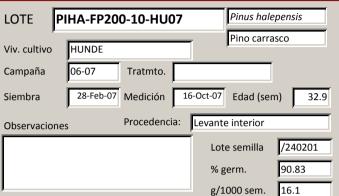
CP: Atributos de respuesta (PRR)

* Se considera un buen indicador del estado de la maquinaria fotosintetizadora y por ello de los procesos fisiológicos relacionados con ella (crec de nuevas raíces)

CALIDAD CABAL: CALIDAD BIOLÓGICA - MICORRIZAS

- * Su ausencia → estancamiento crecimiento y > marras
 - * Terrenos agrícolas o zonas muy degradadas
 - * conveniencia inocular plantas destinadas aquí.
- * Las especies frugales y xerófilas tienen mayor facilidad y diversidad de micorrización,
- * Problema: pervivencia hongo inoculado: Sitio plantación → mucho más hostiles
- * Atributo: Determinación cuantitativa del grado de micorrización (% planta micorrizada).

TESTS PARA EL CONTROL DE CP


- * Ningún atributo es definitivo. Recurrir a varios que permitan:
 - * Rapidez y fáciles de interpretar.
 - * Aportar información sobre el proceso de cultivo.
 - * Adecuarse a las necesidades del repoblador.
- * Conocer las técnicas disponibles
- * Integrar atributos morfológicos y fisiológicos,
 - * En algunas especies como las coníferas los atributos de respuesta son casi imprescindibles.
- * La capacidad predictiva puede tener un periodo de validez corto.

PIHA STANDARD FOR MESOMEDITERRANEAN SITES ON LIMESTONE DERIVED SOILS

CALIDAD DE PLANTA PARA REPOBLACIÓN FORESTAL EN LA **PROVINCIA DE VALENCIA**

Atributos de Calidad (Media y desviación típica para lote y estándar de calidad o especie)

Morfología	Part	te aér	ea			Fisiología: Nutrición						
H (cm)	16.0 2.81		17.1 3.25	4.0	PS Raíz (g)	1.00	0.38	1.23	0.28	N (%)	1.36	1.72 0.25
PS Foliar (g)	1.03	0.38	1.44	0.44	Long Raices (cm) Supf Rad (cm^2)			1532 220	605	K (%) Ca (%)	0.96	0.80
PS Aéreo (g) PSTotal (g)	1.47 2.47		2.11 3.34	0.76 1.01	D medio raíz (cm) Puntas raíz (n)	H		0.053 4668	0.023 3532	Mg (%)	0.30	0.30
Ramas (n)	10.7	2.6	10.7	4.0	L.R./P. (cm/punt)			0.57	0.34	Fe (ppm) Alm (%)	/4 	106
A Fol (cm^2) AF Clor (%)			100	38.7	Fibrosidad (%) Raices blcas (cm)			62.4 164	99	Azuc (%)		3.3 7.9
H/D	5.8		5.3	_	D raices blcas (cm)	\Box		0.044	0.020	Alm (%) Azuc (%)	\vdash	2.7
PA/PR QI_Dickson	1.51 0.29		1.02 0.57		Puntas blancas (n)			1632	1560			

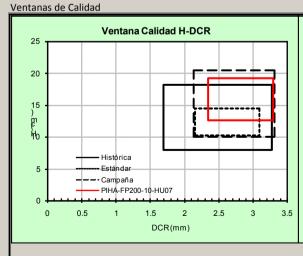
Estado hídrico y Potencial de crecimiento radical (PRR)

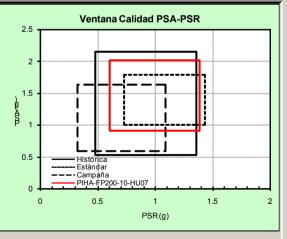
PH (MPa)			-0.23	0.08
PRR-L>1cm (n)	23.07	12.78	15.14	4.80
PRR-PS (g)	0.065	0.040	0.058	0.013

1.72 0.28

0.14

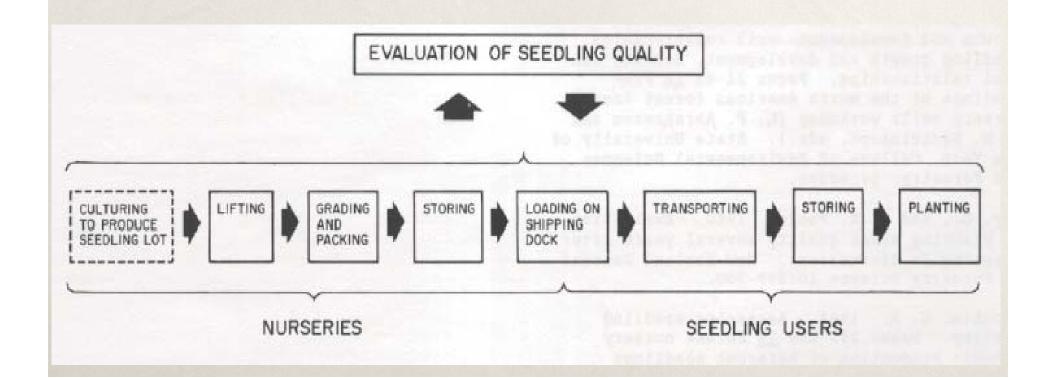
0.06 0.30


29

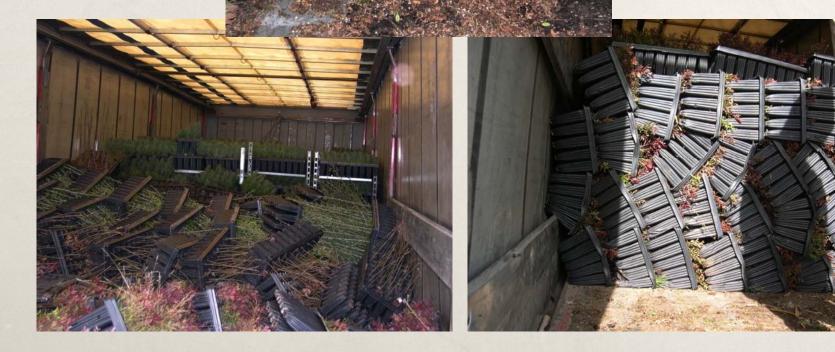

2.2

0.25 0.08

0.80 0.16


3.3 1.6 0.0

Espe cie	Estadíst ico	Altura (cm)	DCR (mm)	Nº ramas	Ps_aére o (g)	Ps_radica I (g)	Diam medio Raíz (cm)	Fibrosid ad (%I<0,5 mm)	Long raíz Blanca (cm)	N	P	K	Alm(pa)	Azuc(pa)	Alm(pr)	Azuc(pr)	PRR- L-10	PRR- Ps
ARU N	N	559	559		91	91	15	15	5	3	3	3	2	2	1	1	58	43
	Media	12.8	2.6		1.85	0.52	0.055	74	11	0.9 6	0.1	1.0 5	15.0	8.25	13.8	11.2	11.3	0.01 7
	Error típ	0.3	0.0		0.16	0.04	0.003	2	5	0.2 1	0.0	0.0 4	5.7	3.25			2.4	0.00 4
CEA U	N	14	14		14	14				1	1	1			1	1		
	Media	51.5	4.4		1.29	2.30				1.4	0.1	0.3			24.8	5.7		
	Error típ	2.9	0.2		0.12	0.16												
COS A	N	11	11		11	11				1	1	1			1	1		
	Media	23.6	3.5		0.59	3.80				1.0 9	0.1	0.3			20.5	14.1		
	Error típ	1.7	0.3		0.10	0.63				-								
FRO R	N	205	205		40	40				2	2	2	1	1	1	1	15	2
	Media	17.1	5.4		1.64	2.56				1.3 8	0.1	0.8	30.2	19.60	19.1	16.0	0.1	0.00
	Error típ	0.5	0.1		0.17	0.16				_	_	0.2					0.1	0.00
JUP H	N	323	309		88	88	10	10	10	4	4	4	1	1	3	3	45	39
	Media	12.3	2.3		0.80	1.18	0.051	65	178	1.0 8	0.1 5	0.9 4	12.1	5.10	6.3	2.3	6.9	0.01 6
	Error tín	0.2	0.0		0.05	0.08	0.002	2	46		0.0				0.3	0.0	0.9	0.00


* Pérdidas de calidad en toda la cadena de procesos:

* Salida del vivero

* Transporte

* Descarga y aviverado en el monte

* Transporte al tajo

- ★ Lote aceptado en vivero → puede ser rechazado a pie de obra.
- * DIRECTIVA 1999/105/EC 22 Dic 1999 sobre comercialización del MFR ANEX VII; PART E
- * Requisitos del MFR en clima Mediterráneo: no debe comercializarse a menos que el 95% del lote tenga calidad comercial:
 - * 1.- (a) injuries other than pruning cuts or injuries due to damage when lifting; (b) lack of buds with the potential to form a leading shoot; (c) multiple stems; (d) deformed root system; (e) signs of desiccation, overheating, mould, decay or other harmful organisms; (f) the plants are not well balanced.
 - * 2. Size of the plants
- * Métodos de control:

TABLA ESTADISTICA DE CONTROL GENERAL DE PLANTAS DEFECTUOSAS Y NO CONFORMES A LAS NORMAS

Plantas controladas	Número de plantas eliminadas									
a	Aceptar b	Continuar c	Rechazar d							
1 a 9	1 1 1 1 1 1	0 a 2	3 y más							
10 a 18		0 a 3	4 y más							
19 a 27	0	1 a 4	5 y más							
28 a 36	0 a 1	2 a 5	6 v más							
37 a 45	0 a 2	3 a 6	7 y más							
46 a 54	0 a 3	4 a 7	8 y más							
55 a 63	0 a 4	5 a 8	9 v más							
64 a 72	0 a 5	6 a 9	10 v más							
73 a 81	0 a 6	7 a 10	11 y más							
82 a 90	0 a 7	8 a 11	12 y más							
91 a 99	0 a 8	9 a 12	13 y más							
100 a 108	0 a 9	10 a 13	14 y más							
109 a 117	0 a 10	11 a 14	15 y más							
118 a 126	0 a 11	12 a 15	16 y más							
127 a 135	0 a 12	13 a 16	17 y más 18 y más							
136 a 144	0 a 13	14 a 17								
145 a 153	0 a 14	15 a 18	19 y más							
154 a 162	0 a 15	16 a 19	20 y más							
163 a 171	0 a 16	17 a 20	21 y más							
172 a 180	0 a 17	18 a 21	22 y más							
181 a 189	0 a 18	19 a 22	23 y más							
190 a 198	0 a 19	20 a 23	24 y más							
199 a 207	0 a 20	21 a 24	25 y más							
208 a 216	0 a 21	22 a 25	26 v más							
217 a 225	0 a 22	23 a 26	27 y más							
226 a 234	0 a 23	24 a 27	28 y más							
235 a 243	0 a 24	25 a 28	29 y más							
244 a 252	0 a 25	26 a 29	30 y más							
253 a 261	0 a 26	27 a 30	31 y más							
262 a 270	0 a 27	28 a 31	32 y más							
271 a 279	0 a 28	29 a 32	33 y más							
280 a 288	0 a 29	30 a 33	34 y más							
289 a 297	0 a 30	31 a 34	35 y más							
298 a 306	0 a 31	32 a 35								
307 a 31	0 a 32	32 a 35 33 a 36	36 y más							
			37 y más							
316 a 324	0 a 33	34 a 37	38 y más							
325 a 333	0 a 34	35 a 38	39 y más							
334 a 342	0 a 35	36 a 39	40 y más							
343 a 351	0 a 36	37 a 40	41 y más							
352 a 360	0 a 37	38 a 41	42 y más							
361 a 369	0 a 38	39 a 42	43 y más							
370 a 378	0 a 39	40 a 43	44 y más							
379 a 387	0 a 40	41 a 44	45 y más							
388 a 396	0 a 41	42 a 45	46 y más							
397 a 405	0 a 42	43 a 46	47 y más							

GRACIAS POR SU ATENCIÓN

